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Abstract—The increasing gap between compute and I/O speeds
in high-performance computing (HPC) systems imposes the need
for techniques to improve applications’ I/O performance. Such
techniques must rely on assumptions about I/O behavior in order
to efficiently allocate I/O resources such as burst buffers, to sched-
ule accesses to the shared parallel file system or to delay certain
applications at the batch scheduler level to prevent contention,
for instance. In this paper, we verify these common assumptions
about I/O behavior, specifically about temporal behavior, using
over 440,000 traces from real HPC systems. By combining traces
from diverse systems, we characterize the behaviors observed
in real HPC workloads. Among other findings, we show that
I/O activity tends to last for a few seconds, and that periodic
jobs are the minority, but responsible for a large portion of the
I/O time. Furthermore, we make projections for the expected
improvement yielded by popular approaches for I/O performance
improvement. Our work provides valuable insights to everyone
working to alleviate the I/O bottleneck in HPC.

Index Terms—high-performance computing, parallel file sys-
tems, workload characterization, temporal I/O behavior

I. INTRODUCTION

In high-performance computing (HPC) platforms, applica-
tions, usually submitted as batch jobs, rely on a parallel file
system (PFS) to access persistent data. The PFS is deployed
over a set of dedicated resources, separate from compute
resources, which are shared by all concurrent jobs. Over the
years, the gap between computing performance and the ability
of storage systems to store and retrieve data has widened
considerably: while supercomputers have become increasingly
efficient for computing tasks, storage systems have become
relatively less efficient [51]. At the same time, new, non-
traditional, HPC applications such as data analytics and ma-
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chine learning have shifted the workload toward more data
intensity [32]. Therefore, I/O has been an important bottleneck
for performance and efficient system usage at scale.

Many techniques have been proposed to improve I/O perfor-
mance, often focusing on mitigating contention in concurrent
accesses. Common examples are the allocation of resources
such as burst buffers or I/O nodes [4], [33], [34], [48], [63],
[67], [69], [73], [75], [78], scheduling concurrent accesses to
the shared PFS [6], [13], [26], [40], [44], adapting applica-
tions (by changing when and how much data they write, for
example) according to current load [62], [64], [67], [72] or
I/O-aware batch scheduling [11], [35], [49], [71]. With rare
exceptions, these techniques rely on some assumptions about
the workload characteristics. As a result, information about
applications’ temporal I/O behaviors is an important building
block to allow for smart decision-making for I/O optimization.

In this paper, we verify such assumptions by extensively
studying the temporal I/O behavior of HPC applications over
a decade. While many efforts have described other I/O char-
acteristics such as request size and used I/O API [9], [53],
[61], [66], [77], the temporal behavior has been the focus of
less work. Moreover, assumptions about it are often based on
experience (e.g., periodic writes can be due to checkpointing,
which is something applications often need [22], [67]) and on
knowledge from specific applications or domains [21], [23],
[29], [79]. By studying large sets of traces from real HPC
systems, we aim at characterizing the workload we can expect
in practice and therefore provide valuable tools for anyone
working to improve HPC I/O. For this analysis, we gather
traces of I/O activity from four different systems, including
both large and small scale systems and facilities, covering
a diverse group of user communities. Through this in-depth
study, we answer the following questions:

a) When do applications perform I/O? While work
on resource allocation usually considers steady activity [10],
[57], [58], which may waste resources [3], [67], efforts to
overlap I/O with compute time (dedicated core to perform I/O
operations [25], use of an ephemeral file system [73]) rely on
operations being more sparse, with sufficient compute time in
between. While answering this question, we also verify the
common belief that HPC applications read at the beginning



and write at the end of their execution.
b) Are applications periodic? Another assumption about

HPC applications is that they perform I/O periodically. This
motivates I/O improvement techniques where the behavior
of an I/O phase is used to predict the behavior of the next
ones [28], [42], [46], [68]. Information about the frequency of
I/O phases has also been used for I/O scheduling [13].

c) How long are I/O intervals? We investigate for how
long I/O activities usually last. This information is important
because, in the absence of prior knowledge about applications’
behaviors, many techniques were proposed to characterize
them based on recent accesses [37], [44]. Such approaches
require some observation time before being able to improve
I/O performance, hence the importance of knowing the impact
of the observation window length.

d) Do applications always present the same temporal
I/O behaviors? An alternative to approaches where recent
accesses are observed in order to make predictions about an
application’s behavior is to rely on knowledge obtained from
previous executions of the same application [10], [24], [78].
Answering this question is therefore of paramount importance
to evaluate the viability of such proposals.

e) Are there usage behavior patterns for users and
projects? They are widely assumed to exist [78], [81]. We
study the “campaign duration” of users and projects/accounts
and categorize typical usage patterns. Answering these ques-
tions about I/O interactions helps the optimization of data
staging and hierarchical management [22], [23].

f) How common are concurrent accesses to the shared
I/O infrastructure? Our goal with this is twofold: first,
we look for evidence of the global I/O performance being
degraded due to contention, which motivated the proposal of
many contention-avoidance techniques [20], [36]. Secondly,
we also quantify how often these concurrent accesses actually
happen, and hence how much benefit can be obtained from a
technique such as I/O scheduling.

After answering these questions, we propose a general
classification of temporal application I/O behaviors. We quan-
tify the prevalence of different classes, which allows for
the creation of realistic workloads for evaluation of new
proposed techniques. Moreover, this classification provides
insights for the design of new I/O improvement techniques.
Our contributions also include publishing two large datasets
of I/O traces that allow for further analysis on temporal I/O
behaviors. Indeed, the fact that such datasets are extremely
rare is one of the reasons why temporal I/O behavior has not
been studied so much before.

This paper is organized as follows. After presenting the
datasets in Section II, we answer the questions a) to f), listed
above, in Sections III to VIII. In Section IX we present our
classification of temporal I/O behaviors. Related work is dis-
cussed in Section X, followed by final remarks in Section XI.

II. DATASETS OF JOB I/O ACTIVITY

In this paper, we extract insights about temporal I/O be-
haviors observed in practice by HPC systems. Therefore, we

base our study on datasets of job I/O activity obtained from
real systems. To focus on realistic workloads, we gathered
traces from jobs running over a period of time instead of
profiling a set of chosen applications ourselves. Furthermore,
we study traces from diverse systems, covering different
scales, facilities, user communities and parallel file systems.
Our datasets, listed below, cover different periods of time over
11 years. Finally, we have two types of traces: system-side,
obtained from the parallel file system, and application-side,
from the Darshan profiling tool [19], [54]. Each type has its
own limitations and benefits, hence, having the two makes
our analyses more complete and robust. The file systems
traces, collected by us, have been made available [15] together
with the code we developed for the analysis. This allows for
reproducibility and extensions of our results.

a) PlaFRIM is an experimental platform from Inria Center
at the University of Bordeaux. It has 192 nodes and a BeeGFS
with two OSS, each with four OST, default stripe count of
4, and a 100 Gbps network. Its peak I/O performance is of
≈12 GiB/s. We collected data over a period of 26 months
(from May 2022 to July 2024). The beegfs-ctl command
was used to obtain bandwidth (grouped by user) every second.

b) SDumont is located at the National Laboratory for
Scientific Computing (LNCC), in Brazil, has 36,472 cores
on 1,134 nodes, and is capable of 5.1 petaflops. Its Lustre is
deployed on 10 OSS, each with one OST. It has a default stripe
count of 1 and a peak performance of 30 GiB/s. collectl
was used every 15 seconds from each compute node to obtain
information from the PFS, from January 2020 to December
2020 (12 months). The workload of this machine has been
studied by Carneiro et al. [16] and Bez et al. [8]

c) Intrepid was a system from the Argonne National
Laboratory, composed of 40,960 nodes. It offered two parallel
file systems, PVFS and GPFS, sharing the same 128 file
servers [47]. We obtained one year (2013) of Darshan traces,
which were downloaded a few years ago from the ALCF I/O
Data Repository [17], when they were still publicly available
online. This I/O infrastructure has been studied by Lang et
al. [47], and two months of traces from 2010 were studied by
Carns et al. [18] (however, not regarding temporal behavior).

d) Blue Waters was a 13.3 petaflops system in Illinois,
USA, decommissioned in 2021. It featured more than 26,000
compute nodes. The scratch Lustre partition was distributed
across 360 OSSs and 1440 OSTs. The report by Jones et
al. [43] studied general I/O characteristics in the machine.
For this work, we used publicly available Darshan traces from
2019 [1], the peak year for machine usage. A preliminary
analysis of this data was conducted by Jolivel et al. [42]

A. Filters and final dataset sizes

To answer most of our questions, we are interested in
observing the I/O behavior of HPC applications. For this
reason, in the file system traces, we excluded all jobs that
did not access the PFS or that did not correspond to a
full application execution: jobs that completed unsuccessfully,
interactive jobs, and jobs that were impacted by temporary



TABLE I: Number of jobs before and after the different filters for file system traces

Jobs
Concurrent

from the
same user

Concurrent
on the

same nodes

Do not use
the PFS

Not completed
batch jobs

In a blind
spot Too short I/O

benchmarks

Final
number
of jobs

PlaFRIM 1,434,330 163,400 - 200,273 470,950 1,832 486,547 94,854 16,474
SDumont 380,840 - 2,191 141,193 116,182 - 55,560 - 65,714

issues with the monitoring tool (the “blind spots”). Moreover,
due to the granularity of monitored data, we could not obtain
traces from concurrent jobs by the same user (in PlaFRIM)
and sharing compute nodes (in SDumont). Additionally, we
excluded from PlaFRIM jobs from a large campaign of I/O
benchmark executions. Finally, we only considered jobs that
executed for at least a certain time (4 seconds in PlaFRIM and
60 seconds in SDumont), because otherwise the time series
were not long enough for any meaningful analysis. Table I
presents the number of jobs filtered out at each step. We are
left with 16,474 jobs for PlaFRIM and 65,714 for SDumont.

For the Darshan traces, we only filtered out corrupted
Darshan files and jobs that did not access the PFS. 42,066 jobs
were left for Intrepid. For Blue Waters, 316,399 Darshan traces
remained, which actually correspond to a smaller number of
individual jobs. In the rest of this paper, for simplicity, we
refer to these traces as “jobs”.

B. General characteristics of the datasets

The extended version of this paper [14, Section 2.2]
presents detailed statistics from the datasets. In summary,
SDumont jobs present in general low I/O performance (mean
of 87 MiB/s), significantly below the system’s theoretical peak.
Moreover, PlaFRIM and SDumont had similar fractions of
time spent on I/O (on average 38 and 44%, median 25 and
37%), despite them being overestimated, due to the resolution
of the traces, at different extents. That indicates that this
estimation is not that far from reality, or at least that short
I/O tends to happen repeatedly in relatively long periods of
time. We further study such I/O intervals in Section V.

III. WHEN DO APPLICATIONS PERFORM I/O?

The general perception of HPC applications is that they
often read at the beginning of their execution, then write
periodically throughout the run and/or at the end [27], [31].
The well-known exception is machine learning codes, which
issue read operations during most of their executions [21],
[29], [32]. In this section, we focus on the question of when
I/O happens at a high level. Later, in Section IX, we further
characterize temporal I/O behavior. The aspect regarding pe-
riodic I/O behavior is examined in Section IV.

We first break job executions into four equal-size segments,
followed by classifying them into write (W), read (R), both
(B), or no I/O (0). To mitigate noise from small operations,
we discard segments with peak bandwidth below 1 MiB/s and
then filter out all 0000 jobs. Additionally, to avoid excessively
breaking I/O intervals into segments, we filter jobs shorter
than 12 seconds (3 seconds per segment, based on median I/O
interval duration as shown in Section V). For SDumont, we

actually filter all jobs shorter than 180 seconds, so they have
at least three points per segment. After the filters, we classify
10,916 jobs from PlaFRIM, 18,231 from SDumont, 40,519
from Intrepid, and 172,452 from Blue Waters.

Fig. 1 shows the temporal behaviors that were most common
in the datasets. We further discuss them below and summarize
their prevalence in Table II. For Intrepid and Blue Waters,
we add smaller datasets composed of the 516 and 1095
(respectively) longest and largest jobs. They were created by
taking the jobs with execution time and number of compute
nodes higher than the 90% quartiles (332 and 145 minutes,
4,096 and 123 nodes).

Read at the beginning: This behavior is indeed very
common by the prevalence of classes such as R000, R00W,
B000, B00B, among others. Most jobs read at the beginning
of their execution (97% in Intrepid, 86% in PlaFRIM, 78%
in Blue Waters and 51% in SDumont). On the other hand, a
smaller portion read only at this moment, with the exception
of the -large datasets (see Table II).

Read throughout the execution: If we count all classes
where there are at least 3 segments with read operations (R
or B), they account for more jobs (39%) in PlaFRIM than in
all others (up to 23%).

Write at the end Although approximately 40% of the jobs
in PlaFRIM, SDumont and Intrepid (96% in Blue Waters)
write at the end, only between 7% and 37% write only at the
end. This behavior is even more rare among the largest jobs.
Moreover, the anticipated R00W class only accounts between
1% and 20% of the jobs (with R0WW accounting for less than
3% on all machines). Interestingly, Blue Waters has many jobs
with I/O at the beginning and at the end only, but those include
writes in the first quarter (B00B, B00W, etc).

Write throughout the execution Between 20% and 34%
of the jobs have writes (W or B) in at least three segments.
Again, the “stereotype” for HPC applications represented by
the RWWW, BWWW, RRWW, and RBWW classes account together
for a small portion of jobs: up to 8% (in Intrepid). Nonetheless,
when considering only the largest jobs, these classes account
for 65% on Intrepid and 46% on Blue Waters.

TABLE II: When do applications perform I/O?

read write
begin-
ning

through-
out

oth-
ers end through

out
oth-
ers

PlaFRIM 32% 39% 29% 7% 34% 59%
SDumont 36% 10% 54% 15% 20% 65%
Intrepid 79% 17% 4% 15% 24% 61%

Intrepid-large 75% 23% 2% 3% 95% 2%
Blue Waters 69% 2% 29% 37% 21% 42%

BW-large 68% 5% 27% 10% 76% 14%
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Fig. 1: Temporal I/O behavior. “Others” combine all the classes that account for less than 3% of the jobs.

When do applications perform I/O?

Most applications read at the beginning of their execution.
However, that is the only moment most read only for the
oldest system and among the largest jobs. Indeed, the widely
accepted description of HPC applications — reading at the
beginning and then writing throughout and/or at the end
of their execution — does not seem to be that common
among shorter jobs, which can write anytime. Finally, in
practice a large number of jobs is expected to not fall
into any of the described behaviors. Therefore, system-
wide I/O improvement techniques should avoid relying on
assumptions about when write operations happen.

IV. ARE APPLICATIONS PERIODIC?

Due to common patterns in HPC, like checkpointing, many
applications perform their I/O periodically. In this section, we
examine this statement closer. For that, we used the existing
tool FTIO [68], which captures periodic I/O phases. We used
its API to develop a parallel extension1 that quickly processes
an entire dataset and merges the results into a single file. For
example, the execution for all 16,474 PlaFRIM traces takes
120.96 seconds with 30 processes on a PlaFRIM (Bora) node.

Darshan traces contain aggregated counters per accessed
file. To estimate a time series for them, we use the timestamps
of first and last read/write to each file. Therefore, we filtered
out jobs that accessed a single file, as they would be seen as
having a single I/O phase, leaving 41,013 and 246,699 jobs
from Intrepid and Blue Waters in this section. As in Section III,
we create the Intrepid-large and BW-large datasets of size 519
and 1,077, respectively.

Upon inspecting many jobs, we noticed varying values for
the confidence metric. This metric gauges the confidence in the
obtained results, but does not allow us to distinguish between
periodic and non-periodic behavior. Thus, most jobs for which
a dominant frequency was detected had a high confidence
value (over 0.5). Initially we consider the I/O phases periodic
for all jobs for which FTIO could find a dominant frequency.
Hence, we further limit this definition to include jobs for which
FTIO detects at least three phases, so it better fits the notion

1https://github.com/tuda-parallel/FTIO/tree/main/ftio/api/trace analysis

of “periodic I/O”. Table III summarizes our findings. We can
see the periodic jobs with more than two I/O phases are the
minority, between 7 and 26% of the studied jobs. Nonetheless,
they are more common among larger jobs (between 31 and
52%). Moreover, we found they are responsible for a more
significant part of the resource usage: periodic writes account
for over a third of the write time in PlaFRIM and SDumont,
and of the total written data in all systems. The extended
version [14, Table 5] includes more details of this analysis.

TABLE III: Proportion of jobs performing periodic I/O

Periodic
read

Periodic
write

Periodic
read AND

write

Total
periodic

PlaFRIM 43.3% 40.6% 27.4% 56.5%
SDumont 13.5% 30.7% 9.4% 34.8%
Intrepid 34.3% 24.5% 17.4% 41.4%

Blue Waters 32.9% 38.1% 17.4% 53.6%

>2
phas-

es

PlaFRIM 16.2% 16.5% 7.1% 25.6%
SDumont 5.1% 13.8% 1.6% 17.3%
Intrepid 1.8% 5.8% 0.3% 7.3%

Intrepid-large 14.6% 17.1% 0.8% 30.9%
Blue Waters 6.8% 3.4% 0.5% 9.7%

BW-large 3.1% 50.8% 2.3% 51.6%

It is important to notice that the numbers in Table III are
an underestimation. First, PlaFRIM and SDumont traces are
limited by their resolution: by Nyquist, any frequency higher
than 0.5 and 0.033 Hz, respectively, will appear as constant I/O
activity. Second, in Darshan traces all periodic I/O involving
a single file cannot be detected.

The extended version [14, Figure 2] includes an analysis of
the found periods. In summary, we did not find any value or
range that is particularly more common than the others.

A. Improving performance for periodic applications only

Many I/O scheduling algorithms model applications as peri-
odic [13], [31]. Such techniques will improve performance by
mitigating contention, but bad decisions (due to non-periodic
applications) may harm it. In this section, we estimate the
potential savings that could be achieved by I/O improvement
techniques that are able to improve performance for periodic
applications, at the cost of a penalty for non-periodic ones.
Our estimate is a simplification, because we consider each job
independently. If, for each job j, tio(j) gives the original I/O

https://github.com/tuda-parallel/FTIO/tree/main/ftio/api/trace_analysis
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TABLE IV: Information about each job j

t(j) Total execution time
tio(j) Total time spent on I/O operations
n(j) Number of periodic I/O phases (given by FTIO)

tp(j)
Time of each periodic I/O phase.
Computed from tio(j)/n(j)

tjint(i) Duration of I/O interval i. Note that tio(j) =
∑

tjint(i))

tjcomp(i)
For interval i, the time since the previous (for reads)
or until the next (for writes) I/O interval

time of the job and t′io(j) is the hypothetical I/O time after an
optimization, we compute total savings in time as:

savings = (
∑

tio −
∑

t′io)/
∑

tio (1)

Table IV lists all information we use about jobs throughout
this paper. For this estimate, we define

t′io(j) =

{
tio(j)× (1− improvement) if j is periodic
tio(j)× (1 + penalty) otherwise

(2)
Results are presented in Fig. 2a. The estimations we present

in this paper are optimistic because we ignore the interaction
between jobs (improving I/O performance may be impossible
in a saturated system), so they provide upper bounds to what
can be expected in practice. Moreover, we only compute such
estimates for PlaFRIM and SDumont, because Darshan traces
do not allow for accurately measuring total I/O time by the
jobs. Finally, only the SDumont result for writes is shown
due to space limitations, and the other (similar) results can be
found in the extended version [14, Figure 3].

We can see that, because periodic jobs are responsible for
a large portion of the I/O activity, such techniques can still be
beneficial as long as the penalty they impose to non-periodic
jobs is not too high and/or the benefit to the periodic ones
is high. To put these values into the system’s perspective, the
best savings in PlaFRIM translated into 13,923 node-hours, or
72 hours of the whole system in a period of 26 months, and
in SDumont into 64.5 days in a period of 12 months.

Node-hours savings

Because most jobs are not I/O intensive, improvements in
I/O performance may not be highly impactful from the
system’s point of view. They should be justified by speeding
up I/O-intensive applications.

B. Improving performance after observing some I/O phases

We now estimate the impact of techniques that can improve
I/O performance after observing a number of I/O phases of
the job. Predicting future I/O phases is useful, for example,
for managing buffers and adapting I/O behaviors (e.g., amount
of data) to avoid contention [62]. To estimate it, we compute
the time savings as per Eq. 1, assuming such techniques are
only effective for periodic applications and that they need to
observe N phases before being able to improve the next ones.
If job j is periodic, we consider it has n(j) I/O phases of
duration tp(j) = tio(j)/n(j) (we obtain n(j) from FTIO).
Thus, we define t′io(j) as follows:

t′io(j) =


N × tp(j)× τ + (n(j)−N)× tp(j)× γ

if j is periodic and n(j) > N

tio(j)× τ otherwise
(3)

With:
τ = 1 + overhead

γ = 1− improvement
(4)

For this we chose an overhead of 10%, a reasonable value
based on related work that predicts future phases/accesses
using grammars [27], DFT [68], etc., and on I/O profiling
tools [18]. Fig. 2b shows the total savings that could be
obtained. We can see that these techniques can be beneficial,
even if they need to observe multiple phases to characterize
applications, as long as they are able to improve performance
for future phases by at least ≈30%.

Are applications periodic?

Despite it being widely accepted that HPC applications
perform I/O periodically, we found that these are actually a
minority of them (less than 26%). However, they account for
a larger portion of the I/O time and node-hours. Therefore, it
can still be worthy to propose I/O improvement techniques
that are only good for periodic applications, even if they
need to observe some I/O phases before starting to yield
improvements. Still, it is important for such techniques to
consider other patterns of I/O are the rule, not the exception.

V. HOW LONG ARE I/O INTERVALS?

In this section, we look into I/O intervals (i.e. periods of
time when jobs are doing I/O). Specifically, we are interested
in their length, because it indicates how fast techniques that
try to dynamically adapt to the current load must be in order to
be useful. For each job, we measure periods of uninterrupted
I/O activity. We focus on PlaFRIM traces only, because they
are the ones with the best resolution. Darshan traces would



overestimate I/O intervals length due to the way their temporal
behavior is estimated from aggregated counters, as previously
discussed, and in SDumont the minimum interval length would
be 15 seconds. We found that most intervals (99.9%) last for
more than one second, but only 8.9% last for 15 seconds or
more. The median duration is 2 seconds. Furthermore, most
jobs (70.5%) present at least two intervals, and 44.3% present
at least four. Compared to read intervals, write intervals are
in general shorter (average of 8 vs. 15 seconds) but jobs
have more of them (on average 92 vs. 44). The extended
version [14, Section 5] contains more details of these results.

A. Improving performance after observing recent accesses

In Section IV-B, we studied the impact of techniques that
observe the application for a few I/O phases to improve per-
formance for future I/O phases if they have similar behavior.
Here, we conduct a similar analysis, but our new hypothetical
technique does not focus on I/O phases, but rather observes
a window of recent accesses in order to improve performance
for the future ones. Detecting the current behavior is often
used for auto-tuning strategies, for example [5]. We assume
this will only be effective inside each I/O interval, since
future I/O intervals do not necessarily present the same I/O
behaviors. Moreover, we assume again a 10% overhead during
the observation period.

For job j, we have tjint(i) the duration of each I/O interval
i (and hence tio(j) =

∑
tjint(i)). For interval i, we compute

its new duration tj′int(i) as:

tj′int(i) =

{
s× τ + (tjint(i)− s)× γ if tjint(i) > s

tjint(i)× τ otherwise
(5)

With the observation time s, the overhead during observa-
tion, and the improvement after observation. These last two
are again represented by τ and γ as per Eq. 4. Then we have:

t′io(j) =
∑

tj′int(i) (6)

The total savings are estimated using Eq. 1. Fig. 3 shows
the results of this analysis for write intervals. The similar read
results can be found in the extended version [14, Figure 5].
We can see even observation periods of a few seconds can
bring savings in read and write time. However, an observation
window of 4s, for example, can improve performance for over
40% of the jobs while decreasing it for over 50% of them. The
ideal window length seems to be between 1 and 2 seconds.

B. Potential for asynchronous I/O

We now investigate the potential for I/O operations to be
made asynchronously. That can be done, for example, by using
node-local devices for temporary storage, and by dedicating
resources into either prefetching data from the PFS or flushing
to it. For this study, we consider that operations can be done
asynchronously if there is enough time without I/O operations
until the next (write) or since the previous (read) I/O operation,
and we allow operations to be partially asynchronous. This is
therefore a pessimistic estimation, since multiple operations
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Fig. 3: Impact of performance-improving techniques after
observing a job for a given time (x-axis) based on expected
future access improvements (the colors). The impact on each
job is estimated from Eq. 6, and total savings from Eq. 1

could be prefetched/flushed at the same time if capacity
(temporary storage and/or available PFS bandwidth) allows.

For each interval i of job j, of duration tjint(i), we define
tjcomp(i) as the time since the previous I/O interval (for reads)
or until the next one (for writes). Then, we compute its
potentially asynchronous time as:

tjint,async(i) = min(tjcomp(i), t
j
int(i)) (7)

We then estimate the I/O time from each job j that can
be made asynchronously as tasync(j) =

∑
tjint,async, and

report the total fraction of potentially asynchronous I/O time,
obtained from:

AsyncRatio =
∑

tasync/
∑

tio (8)

Results are presented in Table V. This analysis is, of course,
a simplification because some applications could be negatively
impacted by dedicating resources for asynchronous I/O. Still,
it shows there is great potential for operations to be done
asynchronously, especially for writes.

TABLE V: Study of the potential for asynchronous I/O

AsyncRatio
(Eq. 8)

#Jobs with >90%
asynchronous I/O

#Jobs with >99%
asynchronous I/O

read 23.5% 41% 36.1%
write 74.5% 22.9% 12.7%

How long are I/O intervals?

Most jobs present a few — at least two — separate time
intervals with I/O activity, each lasting for a few seconds.
As a result, I/O behavior can be observed for a certain
time, followed by taking actions to adapt the system and
improve performance for future accesses. Nonetheless, such
approaches must work on a short window, ideally under
≈1.5 seconds. We also observed that the intervals are often
separated enough that I/O operations could be done asyn-
chronously, especially for particularly (74% of the time).



VI. DO APPLICATIONS ALWAYS PRESENT THE SAME
TEMPORAL I/O BEHAVIORS?

An alternative to gathering information about applications
by observing them for a few I/O phases (Section IV-B) or
for some time (Section V-A) is to use information about
previous runs of the same application. For example, profiles
obtained during previous executions are often used for re-
source management [10], [49]. In this section, we investigate
at what extent runs from the same application present similar
temporal I/O behaviors. For that, we use the Darshan traces
(Intrepid and Blue Waters), which include the information
of the executable. We have access to the binary name with
the arguments used at runtime. However, this technique has
limitations as it ignores other parameters, like environment
variables for instance, and may lead to an overestimation of
identical executions.

Definition 1. we consider multiple traces to come from the
same application a if they are from the same user, have the
same executable name and arguments. We found 9,932 indi-
vidual applications for Intrepid and 14,622 for Blue Waters.

Detailed results can be found in the extended version [14,
Tables 9 and 10]. We found that only 3.3% of Intrepid and
0.7% of Blue Waters individual applications were found to
execute more than once. Nonetheless, they are responsible
for most of the jobs: 80% and 96%, respectively. Repeating
applications were executed on average 24 times on Intrepid
(median of 2) and 134 times on Blue Waters (median of 5).
Most of these runs (80% and 100%, respectively) were at the
same scale.

Despite the large proportion of applications that always run
at the same scale, only 17% and 18% were found to always
access the same amount of data. For the others, the median
difference was of 1 GiB (average of 180 GiB) in Intrepid and
52 KiB (average of 1 TiB) in Blue Waters. Furthermore, most
(73% for Intrepid and 91% for Blue Waters) applications that
executed more than once always presented the same class of
temporal I/O behavior (as defined in Section III, Table II).

Finally, we found a high variability in execution time. Since
I/O time is typically not the largest portion of execution time,
that indicates an even higher I/O performance variability. The
longest run time of each repeating application, divided by the
shortest one, results in a median of 1.38 (average of 343)
times for Intrepid and 2 (average of 2,419) for Blue Waters.
Although less dramatic (average of 7 and 457, respectively),
that variability is present even among runs where the same
amount of data was accessed. Between those, 20% and 32%
have runs that took at least twice the time of others, and 12%
and 20% have a maximum difference of at least 3 times.

I/O performance variability

We found high I/O performance variability across applica-
tion runs, even when handling the same amount of data. For
between 20 and 32% of them, the slowest execution took
at least twice the time of the fastest one.
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Fig. 4: Results achievable by techniques that use information
from a previous run to improve performance in the next ones

We now estimate the impact of a hypothetical technique that
gathers information from applications at their first run (impos-
ing an overhead) and is then able to improve performance of
the next runs, as long as they have similar behavior.

Definition 2. two jobs of the same application a have similar
behavior if they have the same scale, same temporal I/O
behavior (Table II), and the amounts of data they access do
not differ by more than 20%.

For this analysis, we can not rely on I/O time, as we
did in the previous sections, because the Blue Waters and
Intrepid traces do not have a good estimate for total I/O time.
Therefore, we use the total execution time instead, and lower
the values we test for overhead and improvement. For job
j of duration t(j), corresponding to an execution of an unique
application a, we compute its new duration t′(j), impacted by
the I/O improvement technique, as follows. We use τ (for the
overhead) and γ (for the improvement) as previously defined
(Eq. 4), and consider all jobs for the analysis (including the
applications that were executed only once).

t′(j) =


t(j)× γ, if j has similar behavior to the

previous job of a,
t(j)× τ, if j has different behavior or is the first

job of a.
(9)

Similarly to what was done in Eq. 1, we compute fraction
of time saved as:

savings = (
∑

t−
∑

t′)/
∑

t (10)

Results are shown in Fig. 4, where the overhead is repre-
sented by the colors, and the improvement by the values in the
x axes. We only show the result for Blue Waters, as the one
from Intrepid was similar and can be seen in the extended
version [14, Figure 6]. We can see improvements for up to
80% of the jobs are possible at a cost for at least 20%.



TABLE VI: Prevalence of user and group patterns. Multiple
patterns can be assigned to the same user/group.

Pattern Total Users % Total Groups %
(n=247) (n=124)

Mostly Write 55 22.3 39 31.5
Mostly Read 48 19.4 23 18.5
Mixed R/W 21 08.5 18 14.5
Activity Increases 10 04.0 10 08.1
Balance R/W 9 03.6 16 12.9
No Activity 113 45.7 33 26.6

Do applications always present the same temporal I/O
behaviors?
Most jobs are runs of the same applications. Repeating
applications tend to present similar temporal I/O behaviors
across executions (over 70% of the cases). A consequence
is that techniques that use information from previous runs to
improve future ones seem to have good potential. However,
their success depends on a low overhead.

VII. ARE THERE USAGE BEHAVIOR PATTERNS FOR USERS
AND PROJECTS?

Behavior patterns are widely assumed to exist in the work-
flows of users across resources and in time. In this section,
we use the Blue Waters dataset to investigate it. These jobs
come from 247 users across 124 groups/projects accounts.
Blue Waters reports both groups and accounts which largely
coincide. More than half of the users spent less than 53 days
using the system, and 75 % less than 189 days. Groups and
accounts tend to be active for longer, at 50% of groups being
active less than 107 days and 75% for less than 260 days.

We classify users and groups temporal behaviors, following
a similar schema as outlined in Section III: we reduce and
normalize the read and write activity of each user or group into
a 2x4 matrix with the top row encoding read activity over time
and the bottom row write activity. We identified five patterns,
which are shown in Fig. 5. A similar figure, for users, can be
seen in the extended version [14, Figure 8]. Table VI reports
their frequency.

The two most common patterns show many users and
projects predominantly read or write data, which aligns well
with the idea of data producers and consumers. We further
define two mixed patterns and distinguish where read and write
activity are balanced and coincide in time, and where activity
appears to be more randomly distributed over time. Finally, we
notice a number of users and groups that increase their activity
over time. Indeed, many teams tend scale up their experiments
as the application matures (e.g. adding parallelization and
middleware to take advantage of distributed architectures).

Are there usage behavior patterns for users and projects?

Users and group/patterns activity over time can be classified
into a few patterns. It is interesting to notice a large portion
predominantly read or write. These interactions give rise
to I/O optimization opportunities that go beyond the I/O
behavior in a particular run or job.

(a) Groups that predominantly read

(b) Groups that predominantly write

(c) Groups with mixed R/W workloads

(d) Groups with very balanced R/W workloads

(e) Groups with increasing I/O activity over time

Fig. 5: Examples of group I/O activity over time

VIII. HOW COMMON ARE CONCURRENT ACCESSES TO THE
SHARED I/O INFRASTRUCTURE?

Several approaches to mitigate I/O interference are based
on the assumption that parallel file systems are often accessed
concurrently by multiple applications and that contention from
these accesses impairs global I/O performance [12], [56], [59],
[74], [80]. In this section, we investigate this assumption. We
use the file system traces, since for Darshan traces we cannot
say when exactly I/O operations happened. Moreover, we use
all data, before any of the filters discussed in Section II-A. In
the case of PlaFRIM, since the monitoring tool reports activity
per user, it covers all activity to the file system, including
accesses from the frontend and through ssh.

Fig. 6 shows the percentage of time at different concurrency
levels. A figure showing a similar trend for PlaFRIM can
be found in the extended version [14, Figure 10]. We found
that, in both platforms, the PFS is idle for 17% of the time.
In PlaFRIM, less than 1% of the time had more than seven
concurrent users doing I/O, and in SDumont less than 3% of
the time has accesses from more than 15 concurrent jobs.

Next, we examine the impact on bandwidth when multiple
users (or jobs) perform I/O simultaneously. For this, we look at
the average global bandwidth observed in scenarios with dif-
ferent numbers of concurrent accesses. Because some numbers
correspond to only a few data points, we made groups of six.
Fig. 7 shows results for SDumont. For both operations, average
global I/O performance increases with more applications up
to some point, from which additional concurrent applications
harm performance. The differences are of factors between 2
and 7. On the other hand, in PlaFRIM results, available in
the extended version [14, Figure 11], we see the increase
for reads but not the decrease, and there are no differences
for write performance. It is worth noting that PlaFRIM’s I/O
infrastructure has a peak performance between a third and half
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Fig. 6: Percentage of time with I/O accesses by concurrent jobs
in SDumont. Percentages smaller than 0.1% were suppressed
from the graph to improve readability.
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Fig. 7: Average bandwidth in SDumont for different degrees
of concurrency. Y axes do not start at zero.

of that of SDumont, for almost six times less nodes. Therefore,
it can more comfortably absorb its load. These results evidence
that contention from concurrent accesses does harm global I/O
performance.

Finally, we observed that global I/O performance surpassed
80% of the maximum observed performance (9.6 GiB/s and
24 GiB/s for PlaFRIM and SDumont, respectively) less than
1.7% of the time for PlaFRIM and even less for SDumont.
Such behavior has been documented for larger systems as
well [55], [78]. That means we can have performance degra-
dation even when not reaching full system capacity.

How common are concurrent accesses to the shared I/O
infrastructure?
Although concurrent accesses are not that common in
the studied systems, our results evidence that concurrrent
accesses can indeed harm global I/O performance, even
when the imposed load is way below systems’ capacity.
That means other aspects than bandwidth sharing, such as
network interference and access patterns interplays, should
be the focus of interference mitigation techniques.

IX. A CLASSIFICATION OF APPLICATION TEMPORAL I/O
BEHAVIORS

To complement the previous research questions, this section
proposes a fine-grained classification of application temporal

I/O
 B

an
dw

id
th

 (M
iB

)

A

B

C

D

E

F

G

H

I

0
1
2
3

0
10
20
30

0
5

10

0
1
2
3

0
1
2

0
10
20
30

0
0.5

1
1.5

2

0
1
2
3
4

0 10 20 30 40 50 60 70
0

5

Time (s)

Fig. 8: An example job of each identified category. The x axis
shows time, the y axis the bandwidth, and the letters identify
the categories. All remaining jobs that do not fit in a category
are contained in a heterogeneous set, not represented.

I/O behaviors through clustering of time series. Our goal
is to identify common patterns exhibited by applications in
practice. We selected SDumont for this analysis as it is both
a large system and contains over 60,000 jobs. We only rely
on file system traces as we manipulate time series and use
I/O bandwidth as a classification criterion. From each job, we
extract two dedicated time series: read and write. To remove
noise and focus on key I/O activity, we further filter jobs with
low peak I/O performance, below 1MiB/s, leaving 37% and
32% of all the read and write time series, respectively.

A. Methodology for clustering I/O time series

A challenge when comparing these time series and measur-
ing similarity is that they have vastly different duration (from a
few to 105 seconds) and amplitudes (the peak I/O performance,
which varies within seven orders of magnitude). Therefore,
we decided to divide them into groups of similar duration
and peak I/O performance. The “duration”, “peak I/O”, and
“ratio” columns from Table VII present these groups. The
boundaries between categories were empirically defined and
resulted in different values between reads and writes: we aimed
both to gather time series with somewhat similar sizes and to
avoid groups that are too large, as the resulting clustering cost
might not be reasonable (more details below). Interestingly, job
duration and peak I/O performance are not strongly correlated,
as the whole range of I/O performance appears across all the
possible execution times.

Jobs are represented by time series, ordered sets of val-
ues with a fixed time gap between samples. To compute a
distance between couples of jobs, we use the state of the
art method Dynamic Time Warping (DTW). We couple it
with K-means clustering, both from the tslearn python
package [70]. We sample 1,000 jobs per group and apply K-
means using 10 clusters. We found that 1,000 is a large enough
sample to characterize each group in reasonable time, while
10 clusters cover a large spectrum of behaviors. To further



reduce the computation overhead, we also use the tslearn
TimeSeriesResampler package [70] to reduce the size
of long jobs to 80. While this may prune some information,
it is a necessary step to scale our classification.

B. Categories of I/O behavior

By manually investigating and labeling each cluster across
all the groups, we identified a set of commonly occurring
categories. Table VII details all the patterns we identified
along with their occurrence across all the groups. Table VIII
describes the categories, while Fig. 8 shows an example of job
for each. We observe a strong difference between reads and
writes, consistently across the various groups. Read activity is
often concentrated at the beginning of the jobs, as we observed
in Section III, but longer jobs often present different behaviors.
Write activity is more heterogeneous, however we can say
writing at the beginning is more common for short jobs, while
longer jobs more often write throughout the execution. Having
a single burst of write operations at some point is also not
uncommon. C, F, G, and I jobs are often periodic.

We present in Fig. 9 the most populated cluster, for each
read and write group of duration 80, by displaying its centroid.
We observe that read centroids experience a peak at the begin-
ning of the job. On the opposite, write centroids present much
more diverse behavior, illustrating the complex IO behaviors.

Patterns of temporal I/O behavior

The fact that we found a relatively small number of temporal
I/O behavior patterns indicates it is possible to target
specific behaviors for performance optimization. Moreover,
the fact that there are dominating clusters in most groups
says temporal I/O behavior is somewhat predictable.

Finally, we conclude clustering can be used to classify job
traces. However, it is important to notice that in this paper
we used manual labelization, and different methods could
be required for an automatic solution. At the same time, a
combination of the various approaches we used to answer the
questions (for example, the segments analysis from Section III
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Fig. 9: Centroid of each dominant cluster per group across
read and write time series of length 80. The x axis shows
time, while the y axis the normalized bandwidth values of
each centroid with respect to its maximum value, so that we
can compare the trends between centroids.

combined with FTIO output from Section IV) could provide
a similar classification at a lower overhead than tracing and
clustering time series.

X. RELATED WORK

Given the widening gap between computing power and
I/O performance, understanding I/O behavior on large-scale
systems has been a fairly active field for several years [51]. It
generally covers the way storage systems absorb I/O, on the
one hand, and application access patterns, on the other.

On the storage system side, several studies have focused on
analyzing the deployment of specific storage systems after a
few months of production [9], [45], [52], [60]. The aim of
these studies is generally to provide both users and admin-
istrators with optimization suggestions. These conclusions are
aimed at a specific system, and are rarely generalizable to other
architectures. In addition, this type of work requires a large
volume of logs from several sources within the system (file
system logs, application monitoring tools, etc.) [50]. Attempts
have nevertheless been made to provide more global opti-
mization paths that may be suitable for several systems, albeit
limited to the configuration parameters of these systems [5],
[12], [21], [65]. However, those approaches require privileged
access to storage systems, which makes the task difficult.

On the application side, Darshan traces are often used to
study a limited set of supercomputers. For instance, in [53],
the authors analyze a year-long set of I/O traces collected
from three platforms. The main objective of their study is
to investigate how system state impacts the I/O performance
of applications. Similarly, in [74], the authors focus on jobs
in the ”wild” by studying the Darshan traces gathered from
production jobs on a Cray XC40 machine over two months.
Based on that, they propose a top-down analysis and apply it
to more than 88,000 I/O traces, showing that their approach
can identify common performance bottlenecks and uncover
significant contributing factors for poor performance. In [59],
the authors collect and analyze a year of traces from the
storage system of a large-scale production system at NERSC.
They are able to show that as of 2019, their data indicates
that read operations are dominant (i.e., applications are reading
more than writing) which is counter-intuitive. In another study,
Yu et al. [80] collect and analyze I/O traces from two
production HPC systems: Tianhe-1A and SC19, both located
in China. In both systems, the traces are collected over a
period of less than 30 days (in 2018 and 2019). Their focus
is on the spatiality of bursty I/O operations, showing that
traffic peaks often originate from a minority of compute nodes
located close to each other. In [38], the authors study several
years of Darshan logs (from 2017 to 2020) from the Theta
supercomputer (at ALCF), with a main focus on understanding
the causes of poor I/O throughput. Another work, by Yang et
al. [79], proposes a metric to measure burstiness of I/O traces
and apply it to conclude half the jobs in their cluster (which
only runs CFD applications) are highly bursty. Finally, in [56],
the authors study the Intrepid traces (although not from 2013)
and observe high I/O performance variability.



read categorization write categorization

duration peak I/O ratio A B C D E F G H I J peak I/O ratio A B C D E F G H I J

1 - 20 1 - 4 0.07 0.73 0.13 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.07 1 - 5 0.07 0.00 0.31 0.05 0.00 0.11 0.11 0.30 0.00 0.00 0.12
1 - 20 4 - 20 0.12 0.48 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 5 - 40 0.11 0.00 0.62 0.02 0.00 0.05 0.05 0.19 0.00 0.00 0.08
1 - 20 20 - 100 0.15 0.87 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.07 40 - 150 0.08 0.00 0.51 0.00 0.00 0.10 0.03 0.32 0.00 0.00 0.03
1 - 20 100 - 106 0.05 0.42 0.43 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.04 150 - 107 0.03 0.19 0.35 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.12

20 - 80 1 - 4 0.05 0.87 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.07 1 - 5 0.05 0.00 0.00 0.13 0.00 0.00 0.37 0.12 0.29 0.00 0.09
20 - 80 4 - 20 0.08 0.79 0.10 0.00 0.00 0.04 0.00 0.04 0.00 0.00 0.03 5 - 40 0.14 0.00 0.00 0.06 0.00 0.06 0.00 0.31 0.35 0.06 0.16
20 - 80 20 - 100 0.16 0.70 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.06 40 - 150 0.11 0.00 0.00 0.11 0.00 0.00 0.07 0.77 0.00 0.00 0.06
20 - 80 100 - 106 0.06 0.47 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.06 150 - 107 0.06 0.00 0.00 0.00 0.23 0.23 0.23 0.00 0.23 0.00 0.06

80 - 105 1 - 4 0.03 0.37 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 1 - 5 0.09 0.00 0.00 0.05 0.00 0.00 0.71 0.00 0.20 0.00 0.05
80 - 105 4 - 20 0.1 0.75 0.07 0.00 0.00 0.00 0.05 0.07 0.00 0.00 0.07 5 - 40 0.08 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.16 0.28 0.18
80 - 105 20 - 100 0.07 0.28 0.09 0.00 0.00 0.09 0.00 0.10 0.00 0.00 0.44 40 - 150 0.06 0.00 0.00 0.04 0.00 0.19 0.33 0.00 0.04 0.11 0.28
80 - 105 100 - 106 0.07 0.19 0.19 0.00 0.00 0.00 0.00 0.19 0.19 0.00 0.24 150 - 107 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.42 0.00 0.15

TABLE VII: Jobs grouping and categorization. Each entry presents a group of read/write time series according to both their
duration and peak I/O performance. Each read/write group has a ratio indicating the proportion of time series that belong to
this group. For instance, 15% of all the read time series last between 1 and 20 seconds, with I/O performance between 20 and
100 MiB/s. Then, for each homogeneous group, we identify the different categories of time series that occur. For instance,
51% of the write time series with duration between 1 and 20 seconds and peak I/O performance between 40 and 150 MiB/s
fall in category B.

TABLE VIII: Categories description

category description

A Burst at the start of the job
B Longer burst at the beginning of the job
C Multiple, relatively short, I/O phases
D Short job dominated by I/O
E Ends with I/O activity
F I/O activity dominates the job
G Continuous I/O activity for a big part of the job
H Short I/O burst but not at a specific moment
I Dominating I/O with significant fluctuations
J Hectic I/O activity

Among other results, those papers demonstrate the effec-
tiveness of I/O traces in providing insights into a large-
scale I/O system. However, although they provide a relevant
perspective on I/O behavior, the temporal aspect is mostly
omitted. Such temporal I/O behavior studies are challenging
because datasets are limited either in terms of machines, or in
terms of the volume of data collected and analyzed. Moreover,
their analysis requires the use of adapted techniques such
as clustering. On this subject, Betke and Kunkel [7] design
and evaluate multiple approaches for clustering 1 million
jobs. Their approach aims at covering multiple aspects of I/O
behavior, including the temporal one, at once. That leads to a
large number of clusters, which makes extracting information
from them difficult. In contrast, we focused on clustering
individual time series separately.

A straightforward and computationally intensive approach
for clustering time series consists in using DTW distance with
a clustering algorithm [2], [41], [70]. Alternative methods [30],
[76] extract features that act as proxies to calculate the
distances. While potentially cheap to apply, the key challenge
of such approaches is to ensure that features capture the
statistical properties that can discriminate in a meaningful way.
Deep neural networks (DNNs) showed promising results in
augmenting such features or by directly classifying series [39],

[82]. We plan on exploring other methods towards a more
automatic clustering of I/O traces as future work. In this paper,
we fill a gap in the literature by proposing an in-depth study
of temporal I/O behavior based on massive heterogeneous
datasets.

XI. CONCLUSION

In this paper, we studied the temporal I/O behavior of
over 440,000 jobs running on four HPC systems, all different
in terms of infrastructure, scale, and users, covering several
time periods over the last 11 years. The data we analyzed
came either from parallel file systems (system-side traces) or
from I/O monitoring tools (application-side traces). The aim
of analyzing these traces is to provide an in-depth study of
data accesses by HPC applications in the wild. We have thus
identified and addressed a number of questions dealing with
the temporality of I/Os, their periodicity, the existence and
prevalence of certain patterns, I/O concurrency between appli-
cations or user practices. We also proposed a classification of
temporal I/O behaviors, which shows a few patterns are able to
represent a vast majority of jobs. Finally, we make two large
datasets of traces available for the community. Overall, the
results of this study provide relevant information for anyone
working to improve high-performance I/O. They also serve as
a basis for future research into both behavior detection tools
and the use of trace analysis, particularly for scheduling and
application optimization.
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[73] M. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes, and
A. Brinkmann. GekkoFS - A temporary distributed file system for HPC
applications. In IEEE International Conference on Cluster Computing
(CLUSTER), pages 319–324, USA, Sept. 2018. IEEE.

https://github.com/LLNL/UnifyFS
https://github.com/LLNL/UnifyFS


[74] T. Wang, S. Byna, G. K. Lockwood, S. Snyder, P. Carns, S. Kim, and
N. J. Wright. A zoom-in analysis of I/O logs to detect root causes
of i/o performance bottlenecks. In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages
102–111. IEEE, 2019.

[75] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu. An ephemeral
burst-buffer file system for scientific applications. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 807–818, USA, Nov. 2016. IEEE.

[76] Z. Xiao, X. Xu, H. Xing, S. Luo, P. Dai, and D. Zhan. Rtfn: A robust
temporal feature network for time series classification. Information
sciences, 571:65–86, 2021.

[77] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan,
Y. Yang, J. Zhai, W. Liu, and W. Xue. End-to-end I/O monitoring on
a leading supercomputer. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 379–394, Boston,
MA, Feb. 2019. USENIX Association.

[78] B. Yang, Y. Zou, W. Liu, and W. Xue. An end-to-end and adaptive
I/O optimization tool for modern HPC storage systems. In 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 1294–1304, 2022.

[79] W. Yang, X. Liao, D. Dong, and J. Yu. A quantitative study of
the spatiotemporal I/O burstiness of HPC application. In 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 1349–1359, 2022.

[80] J. Yu, W. Yang, F. Wang, D. Dong, J. Feng, and Y. Li. Spatially
bursty I/O on supercomputers: Causes, impacts and solutions. IEEE
Transactions on Parallel and Distributed Systems, 31(12):2908–2922,
2020.

[81] W. Zhang, S. Byna, H. Sim, S. Lee, S. Vazhkudai, and Y. Chen.
Exploiting user activeness for data retention in HPC systems. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21, New York, NY,
USA, 2021. Association for Computing Machinery.

[82] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu. Convolutional neural
networks for time series classification. Journal of systems engineering
and electronics, 28(1):162–169, 2017.


	Introduction
	Datasets of job I/O activity
	Filters and final dataset sizes
	General characteristics of the datasets

	When do applications perform I/O?
	Are applications periodic?
	Improving performance for periodic applications only
	Improving performance after observing some I/O phases

	How long are I/O intervals?
	Improving performance after observing recent accesses
	Potential for asynchronous I/O

	Do applications always present the same temporal I/O behaviors?
	Are there usage behavior patterns for users and projects?
	How common are concurrent accesses to the shared I/O infrastructure?
	A classification of application temporal I/O behaviors
	Methodology for clustering I/O time series
	Categories of I/O behavior

	Related Work
	Conclusion
	References

